Appendix I — Comparative Assessment of QualoCEP and Google Geocoding API Performance

I.1 Overview

This document outlines a workflow to evaluate the geocoding performance of QualoCEP in comparison to the Google Geocoding API. The comparison focuses on latitude and longitude outputs to assess the consistency and reliability of both services, which are integral to the geocoding tasks in this thesis.

To execute this notebook, ensure you have a valid Google Geocoding API key stored in your .Renviron file. For detailed instructions on obtaining and configuring the API key, refer to the tidygeocoder R package documentation.

I.2 Setting the Environment

Code
source(here::here("R", "get_qualocep_data.R"))

I.3 Importing QualOCep Data

Code
qualocep_data <- get_qualocep_data()

I.4 Random Test 1

I.4.1 QualOCep Data

Code
sample_data <- dplyr::sample_n(qualocep_data, 1)

sample_data |> as.list() |> rutils:::list_as_tibble()
ABCDEFGHIJ0123456789
name
<chr>
value
<chr>
postal_code59642000
street_typeAvenida
street_nameWilson Rosado
streetAvenida Wilson Rosado
complementNA
placeNA
neighborhoodItapetinga
municipality_code2408003
municipalityMossoró
state_code24
Code
leaflet::leaflet() |>
  leaflet::addTiles() |>
  leaflet::addMarkers(
    lng = sample_data$longitude,
    lat = sample_data$latitude,
    popup = paste0(
      "Latitude: ", sample_data$latitude, "<br>",
      "Longitude: ", sample_data$longitude
    )
  )

I.4.2 Google Geocoding API

Code
google_data <-
  sample_data |>
  dplyr::mutate(
    address = orbis::render_brazil_address(
      street = sample_data$street,
      complement = sample_data$complement,
      neighborhood = sample_data$neighborhood,
      municipality = sample_data$municipality,
      state = sample_data$state,
      postal_code = sample_data$postal_code
    )
  ) |>
  tidygeocoder::geocode(
    address = address,
    method = "google"
  )
#> Passing 1 address to the Google single address geocoder
#> Query completed in: 0.9 seconds

google_data |> as.list() |> rutils:::list_as_tibble()
ABCDEFGHIJ0123456789
name
<chr>
value
<chr>
postal_code59642000
street_typeAvenida
street_nameWilson Rosado
streetAvenida Wilson Rosado
complementNA
placeNA
neighborhoodItapetinga
municipality_code2408003
municipalityMossoró
state_code24
Code
leaflet::leaflet() |>
  leaflet::addTiles() |>
  leaflet::addMarkers(
    lng = google_data$longitude,
    lat = google_data$latitude,
    popup = paste0(
      "Latitude: ", google_data$latitude, "<br>",
      "Longitude: ", google_data$longitude
    )
  )

I.5 Random Test 2

I.5.1 QualOCep Data

Code
sample_data <- dplyr::sample_n(qualocep_data, 1)

sample_data |> as.list() |> rutils:::list_as_tibble()
ABCDEFGHIJ0123456789
name
<chr>
value
<chr>
postal_code74911460
street_typeAvenida
street_nameOtoniel da Cunha
streetAvenida Otoniel da Cunha
complementNA
placeNA
neighborhoodVila Brasília
municipality_code5201405
municipalityAparecida de Goiânia
state_code52
Code
leaflet::leaflet() |>
  leaflet::addTiles() |>
  leaflet::addMarkers(
    lng = sample_data$longitude,
    lat = sample_data$latitude,
    popup = paste0(
      "Latitude: ", sample_data$latitude, "<br>",
      "Longitude: ", sample_data$longitude
    )
  )

I.5.2 Google Geocoding API

Code
google_data <-
  sample_data |>
  dplyr::mutate(
    address = orbis::render_brazil_address(
      street = sample_data$street,
      complement = sample_data$complement,
      neighborhood = sample_data$neighborhood,
      municipality = sample_data$municipality,
      state = sample_data$state,
      postal_code = sample_data$postal_code
    )
  ) |>
  tidygeocoder::geocode(
    address = address,
    method = "google"
  )
#> Passing 1 address to the Google single address geocoder
#> Query completed in: 0.3 seconds

google_data |> as.list() |> rutils:::list_as_tibble()
ABCDEFGHIJ0123456789
name
<chr>
value
<chr>
postal_code74911460
street_typeAvenida
street_nameOtoniel da Cunha
streetAvenida Otoniel da Cunha
complementNA
placeNA
neighborhoodVila Brasília
municipality_code5201405
municipalityAparecida de Goiânia
state_code52
Code
leaflet::leaflet() |>
  leaflet::addTiles() |>
  leaflet::addMarkers(
    lng = google_data$longitude,
    lat = google_data$latitude,
    popup = paste0(
      "Latitude: ", google_data$latitude, "<br>",
      "Longitude: ", google_data$longitude
    )
  )

I.6 Random Test 3

I.6.1 QualOCep Data

Code
sample_data <- dplyr::sample_n(qualocep_data, 1)

sample_data |> as.list() |> rutils:::list_as_tibble()
ABCDEFGHIJ0123456789
name
<chr>
value
<chr>
postal_code69550198
street_typeBeco
street_namedo Tirico
streetBeco do Tirico
complementNA
placeNA
neighborhoodSanto Antônio
municipality_code1304203
municipalityTefé
state_code13
Code
leaflet::leaflet() |>
  leaflet::addTiles() |>
  leaflet::addMarkers(
    lng = sample_data$longitude,
    lat = sample_data$latitude,
    popup = paste0(
      "Latitude: ", sample_data$latitude, "<br>",
      "Longitude: ", sample_data$longitude
    )
  )

I.6.2 Google Geocoding API

Code
google_data <-
  sample_data |>
  dplyr::mutate(
    address = orbis::render_brazil_address(
      street = sample_data$street,
      complement = sample_data$complement,
      neighborhood = sample_data$neighborhood,
      municipality = sample_data$municipality,
      state = sample_data$state,
      postal_code = sample_data$postal_code
    )
  ) |>
  tidygeocoder::geocode(
    address = address,
    method = "google"
  )
#> Passing 1 address to the Google single address geocoder
#> Query completed in: 0.2 seconds

google_data |> as.list() |> rutils:::list_as_tibble()
ABCDEFGHIJ0123456789
name
<chr>
value
<chr>
postal_code69550198
street_typeBeco
street_namedo Tirico
streetBeco do Tirico
complementNA
placeNA
neighborhoodSanto Antônio
municipality_code1304203
municipalityTefé
state_code13
Code
leaflet::leaflet() |>
  leaflet::addTiles() |>
  leaflet::addMarkers(
    lng = google_data$longitude,
    lat = google_data$latitude,
    popup = paste0(
      "Latitude: ", google_data$latitude, "<br>",
      "Longitude: ", google_data$longitude
    )
  )