Skip to contents

read_acttrust() allows you to read, tidy, and validate an ActTrust file in a consistent and easy manner. You can see the output data structure in ?acttrust.

ActTrust is a trademark of Condor Instruments Ltda.

Usage

read_acttrust(
  file = tcltk::tk_choose.files(mult = FALSE),
  tz = "UTC",
  regularize = TRUE
)

Arguments

file

(optional) A string with the file path for the ActTrust data. If not assigned, a dialog window will open allowing the user to browse and select a file (default: tk_choose.files()).

tz

(optional) A string that specifies which time zone to parse the dates/time with. The string must be a time zone that is recognized by the user's OS. For more information see ?timezone (default: "UTC").

regularize

(optional) A logical value indicating if the function must correct irregular intervals (strongly recommended). See more about it in the Details section (default: TRUE).

Value

A tsibble object. The data structure can be found in ?acttrust.

Details

regularize parameter

ActTrust data files may have uneven epochs or intervals due to small drifts in the device's internal clock. These irregularities can affect analyses. Setting regularize = TRUE in read_acttrust() will detect and correct such issues by regularizing the time intervals.

Regularization is performed only if a clear epoch or periodicity is found. During this process, values within each epoch are aggregated: numeric variables are averaged, and categorical or integer variables are assigned their most frequent value (mode).

Any gaps in the time series are filled with NA, and the corresponding state is set to 9.

Offwrist data

read_acttrust() will convert all offwrist data (where state == 4) to missing values (NA). These data points will remain classified as offwrist in the state variable.

See also

Other read/write functions: write_acttrust()

Examples

get_raw_data("acttrust.txt") |> read_acttrust()
#>  Reading data
#>  Reading data [17ms]
#> 
#>  Tidying data
#>  Tidying data [53ms]
#> 
#>  Validating data
#>  Validating data [692ms]
#> 
#> # A tsibble: 1,441 x 17 [1m] <UTC>
#>    timestamp             pim   tat   zcm orientation wrist_temperature
#>    <dttm>              <dbl> <dbl> <dbl>       <dbl>             <dbl>
#>  1 2021-04-24 04:14:00  7815   608   228           0              26.9
#>  2 2021-04-24 04:15:00  2661   160    64           0              27.2
#>  3 2021-04-24 04:16:00  3402   243    80           0              27.7
#>  4 2021-04-24 04:17:00  4580   317   125           0              27.9
#>  5 2021-04-24 04:18:00  2624   255    33           0              28.0
#>  6 2021-04-24 04:19:00  3929   246   105           0              28.1
#>  7 2021-04-24 04:20:00  5812   369   171           0              28.2
#>  8 2021-04-24 04:21:00  3182   270    54           0              28.4
#>  9 2021-04-24 04:22:00  6362   373   189           0              28.6
#> 10 2021-04-24 04:23:00  2621   159    64           0              28.7
#> # ℹ 1,431 more rows
#> # ℹ 11 more variables: external_temperature <dbl>, light <dbl>,
#> #   ambient_light <dbl>, red_light <dbl>, green_light <dbl>, blue_light <dbl>,
#> #   ir_light <dbl>, uva_light <dbl>, uvb_light <dbl>, event <dbl>, state <dbl>