
Get Brazilian municipalities geographic coordinates
Source:R/get_brazil_municipality_coords.R
get_brazil_municipality_coords.Rd
get_brazil_municipality_coords()
returns a tibble
with the latitude and longitude coordinates of Brazilian municipalities.
Arguments
- municipality_code
(optional) An
integerish
vector with the IBGE codes of Brazilian municipalities. Useget_brazil_municipality_code()
to obtain codes from municipality names and states. IfNULL
the function returns all municipalities (default:NULL
).- year
(optional) An
integerish
number indicating the year of the data regarding the municipalities (default:Sys.Date() |> lubridate::year()
).- coords_method
(optional) A string indicating the method to retrieve the latitude and longitude coordinates of the municipalities. Options are:
"geobr"
: Usesread_municipal_seat()
from thegeobr
package to retrieve the coordinates."geocodebr"
: Uses thegeocode()
from thegeocodebr
package to retrieve the coordinates. (default:"geobr"
).
- force
(optional) A
logical
flag indicating whether to force the download of the data again (default:FALSE
).
Value
A tibble
with the following columns:
municipality_code
: The municipality code.latitude
: The municipality latitude.longitude
: The municipality longitude.
Details
The data from this function is based on data from the Brazilian Institute
of Geography and Statistics (IBGE) via the
geobr
and geocodebr
R packages.
Both packages are produced by Brazil's Institute for Applied Economic Research (IPEA) and access the Brazilian Institute of Geography and Statistics (IBGE) data.
See also
Other Brazil functions:
get_brazil_fu()
,
get_brazil_municipality()
,
get_brazil_municipality_code()
,
get_brazil_municipality_latitude()
,
get_brazil_municipality_longitude()
,
get_brazil_region()
,
get_brazil_region_code()
,
get_brazil_state()
,
get_brazil_state_by_utc()
,
get_brazil_state_capital()
,
get_brazil_state_code()
,
get_brazil_state_latitude()
,
get_brazil_state_longitude()
,
render_brazil_address()
Examples
get_brazil_municipality_coords() |> dplyr::glimpse()
#> ! The closest map year to 2025 is 2010. Using year 2010 instead.
#> Using year/date 2010
#> Rows: 5,565
#> Columns: 3
#> $ municipality_code <dbl> 1100015, 1100023, 1100031, 1100049, 1100056, 1100064…
#> $ latitude <dbl> -11.935540, -9.908463, -13.499763, -11.433865, -13.1…
#> $ longitude <dbl> -61.99982, -63.03327, -60.54431, -61.44294, -60.8184…
get_brazil_municipality_coords(municipality_code = 3550308)
#> ! The closest map year to 2025 is 2010. Using year 2010 instead.
#> Using year/date 2010
#> # A tibble: 1 × 3
#> municipality_code latitude longitude
#> <dbl> <dbl> <dbl>
#> 1 3550308 -23.6 -46.6
get_brazil_municipality_coords(municipality_code = 3550)
#> ! The closest map year to 2025 is 2010. Using year 2010 instead.
#> Using year/date 2010
#> # A tibble: 10 × 3
#> municipality_code latitude longitude
#> <dbl> <dbl> <dbl>
#> 1 3550001 -23.2 -45.3
#> 2 3550100 -22.7 -48.6
#> 3 3550209 -23.9 -48.0
#> 4 3550308 -23.6 -46.6
#> 5 3550407 -22.5 -47.9
#> 6 3550506 -22.8 -49.7
#> 7 3550605 -23.5 -47.1
#> 8 3550704 -23.8 -45.4
#> 9 3550803 -21.7 -46.8
#> 10 3550902 -21.5 -47.6
get_brazil_municipality_coords(municipality_code = c(3550308, 3304557))
#> ! The closest map year to 2025 is 2010. Using year 2010 instead.
#> Using year/date 2010
#> # A tibble: 2 × 3
#> municipality_code latitude longitude
#> <dbl> <dbl> <dbl>
#> 1 3304557 -22.9 -43.2
#> 2 3550308 -23.6 -46.6