brazil_municipality()
returns a tibble
with data
about Brazilian municipalities.
Note: This function requires an internet connection to work and the
geobr
or
geocodebr
package to be
installed, depending on the chosen method for retrieving coordinates.
Usage
brazil_municipality(
municipality = NULL,
state = NULL,
year = as.numeric(substr(Sys.Date(), 1, 4)),
coords_method = "geobr",
force = FALSE
)
Arguments
- municipality
(optional) A
character
vector with the name of the municipalities. IfNULL
the function returns all municipalities (default:NULL
).- state
(optional) A
character
vector with the name of the states (default:NULL
).- year
(optional) An
integerish
number indicating the year of the data regarding the municipalities (default:Sys.Date() |> substr(1, 4) |> as.numeric()
).- coords_method
(optional) A string indicating the method to retrieve the latitude and longitude coordinates of the municipalities (default:
"geobr"
). Options are:"geobr"
: Usesread_municipal_seat()
from thegeobr
package to retrieve the coordinates."geocodebr"
: Uses thegeocode()
from thegeocodebr
package to retrieve the coordinates.
- force
(optional) A
logical
flag indicating whether to force the download of the data again (default:FALSE
).
Value
A tibble
with the following columns:
region_code
: The region code.region
: The region name.state_code
: The state code.state
: The state name.federal_unit
: The state abbreviation.municipality_code
: The municipality code.municipality
: The municipality name.latitude
: The municipality latitude.longitude
: The municipality longitude.
Details
The data from this function is based on data from the Brazilian Institute
of Geography and Statistics (IBGE) via the
geobr
and geocodebr
R packages.
Both packages are produced by Brazil's Institute for Applied Economic Research (IPEA) and access the Brazilian Institute of Geography and Statistics (IBGE) data.
See also
Other Brazil functions:
brazil_fu()
,
brazil_municipality_code()
,
brazil_municipality_coords()
,
brazil_municipality_latitude()
,
brazil_municipality_longitude()
,
brazil_region()
,
brazil_region_code()
,
brazil_render_address()
,
brazil_state()
,
brazil_state_by_utc()
,
brazil_state_capital()
,
brazil_state_code()
,
brazil_state_latitude()
,
brazil_state_longitude()
Examples
library(curl)
#> Using libcurl 8.5.0 with OpenSSL/3.0.13
library(dplyr)
#>
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#>
#> filter, lag
#> The following objects are masked from ‘package:base’:
#>
#> intersect, setdiff, setequal, union
# \dontrun{
if (has_internet()) {
brazil_municipality() |> glimpse()
}
#> ! The closest map year to 2025 is 2022. Using year 2022 instead.
#> Using year/date 2022
#> Rows: 5,570
#> Columns: 9
#> $ region_code <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
#> $ region <chr> "North", "North", "North", "North", "North", "Nor…
#> $ state_code <int> 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1…
#> $ state <chr> "Rondônia", "Rondônia", "Rondônia", "Rondônia", "…
#> $ federal_unit <chr> "RO", "RO", "RO", "RO", "RO", "RO", "RO", "RO", "…
#> $ municipality_code <dbl> 1100015, 1100023, 1100031, 1100049, 1100056, 1100…
#> $ municipality <chr> "Alta Floresta D'Oeste", "Ariquemes", "Cabixi", "…
#> $ latitude <dbl> -11.935540305, -9.908462867, -13.499763460, -11.4…
#> $ longitude <dbl> -61.99982390, -63.03326928, -60.54431358, -61.442…
# }
# \dontrun{
if (has_internet()) {
brazil_municipality(municipality = "Belém") |> glimpse()
}
#> Rows: 3
#> Columns: 9
#> $ region_code <int> 1, 2, 2
#> $ region <chr> "North", "Northeast", "Northeast"
#> $ state_code <int> 15, 25, 27
#> $ state <chr> "Pará", "Paraíba", "Alagoas"
#> $ federal_unit <chr> "PA", "PB", "AL"
#> $ municipality_code <dbl> 1501402, 2501906, 2700805
#> $ municipality <chr> "Belém", "Belém", "Belém"
#> $ latitude <dbl> -1.459845000, -6.694042610, -9.568648231
#> $ longitude <dbl> -48.48782569, -35.53627408, -36.49449799
# }
# \dontrun{
if (has_internet()) {
brazil_municipality(municipality = "Belém", state = "Pará") |> glimpse()
}
#> Rows: 1
#> Columns: 9
#> $ region_code <int> 1
#> $ region <chr> "North"
#> $ state_code <int> 15
#> $ state <chr> "Pará"
#> $ federal_unit <chr> "PA"
#> $ municipality_code <dbl> 1501402
#> $ municipality <chr> "Belém"
#> $ latitude <dbl> -1.459845
#> $ longitude <dbl> -48.48782569
# }
# \dontrun{
if (has_internet()) {
brazil_municipality(municipality = c("Belém", "São Paulo")) |> glimpse()
}
#> Rows: 4
#> Columns: 9
#> $ region_code <int> 1, 2, 2, 3
#> $ region <chr> "North", "Northeast", "Northeast", "Southeast"
#> $ state_code <int> 15, 25, 27, 35
#> $ state <chr> "Pará", "Paraíba", "Alagoas", "São Paulo"
#> $ federal_unit <chr> "PA", "PB", "AL", "SP"
#> $ municipality_code <dbl> 1501402, 2501906, 2700805, 3550308
#> $ municipality <chr> "Belém", "Belém", "Belém", "São Paulo"
#> $ latitude <dbl> -1.459845000, -6.694042610, -9.568648231, -23.567…
#> $ longitude <dbl> -48.48782569, -35.53627408, -36.49449799, -46.570…
# }