Lorenz System

Author

Daniel Vartanian

Published

2024-10-25

Project Status: Inactive – The project has reached a stable, usable state but is no longer being actively developed; support/maintenance will be provided as time allows. License: MIT

Overview

This document focuses on illustrating the Lorenz system, originally introduced by Edward N. Lorenz in his seminal (1963) paper. The Lorenz system comprises three coupled, nonlinear ordinary differential equations that model atmospheric convection, effectively illustrating the chaotic nature of weather patterns.

The dynamics of the model are represented by the following set of first-order, nonlinear differential equations:

\[ \begin{aligned} \frac{dx}{dt} &= \sigma(y - x), \\ \frac{dy}{dt} &= x(\rho - z) - y \\ \frac{dz}{dt} &= xy - \beta z \end{aligned} \] In these equations:

  • \(x\) represents the rate of convection;
  • \(y\) denotes the horizontal temperature variation;
  • \(z\) indicates the vertical temperature variation;
  • \(\sigma\), \(\rho\), and \(\beta\) are system parameters corresponding to the Prandtl number, Rayleigh number, and specific physical dimensions of the fluid layer.

To learn more about the Lorenz system, see Lorenz (2008).

Setting up the environment

Code
library(checkmate, quietly = TRUE)
library(deSolve, quietly = TRUE)
library(dplyr, quietly = TRUE)
library(ggplot2, quietly = TRUE)
library(gg3D, quietly = TRUE) # remotes::install_github("AckerDWM/gg3D")
library(latex2exp, quietly = TRUE)
library(magrittr, quietly = TRUE)

Numerical solution of the equations

Code
lorenz_system <- function(
    x = 1, 
    y = 1, 
    z = 1, 
    sigma = 10, 
    rho = 28, 
    beta = 8 / 3, 
    from = 0, 
    to = 100,
    by = 0.01
  ) {
  checkmate::assert_number(x)
  checkmate::assert_number(y)
  checkmate::assert_number(z)
  checkmate::assert_number(sigma)
  checkmate::assert_number(rho)
  checkmate::assert_number(beta)
  checkmate::assert_number(from, lower = 0)
  checkmate::assert_number(to, lower = from)
  checkmate::assert_number(by, lower = 0)
  
  fun <- function (t, y, parms) {
    list2env(as.list(y), envir = environment())
    list2env(as.list(parms), envir = environment())
    
    list(
      c(
        dx = sigma * (y - x),
        dy = x * (rho - z) - y,
        dz = (x * y) - (beta * z)
      )
    )
  }
  
  initial_values <- c(x = x, y = y, z = z)
  parameters <- list(sigma = sigma, rho = rho, beta = beta)
  time <- seq(from = from, to = to, by = by)
  
  data <- 
    deSolve::ode(
      y = initial_values,
      times = time, 
      func = fun,
      parms = parameters
    ) |>
    dplyr::as_tibble() |>
    dplyr::mutate(dplyr::across(dplyr::everything(), ~ as.numeric(.x)))
  
  list(
    data = data,
    initial_values = as.list(initial_values),
    parameters = as.list(parameters)
  ) |>
  invisible()
}
Code
lorenz_system() |> magrittr::extract2("data")
#> # A tibble: 10,001 × 4
#>    time     x     y     z
#>   <dbl> <dbl> <dbl> <dbl>
#> 1  0     1     1    1    
#> 2  0.01  1.01  1.26 0.985
#> 3  0.02  1.05  1.52 0.973
#> 4  0.03  1.11  1.80 0.965
#> 5  0.04  1.19  2.09 0.962
#> 6  0.05  1.29  2.40 0.964
#> # ℹ 9,995 more rows

Plotting system dynamics

Code
plot_system_dynamics <- function(
    x = 1, 
    y = 1, 
    z = 1, 
    sigma = 10, 
    rho = 28, 
    beta = 8 / 3, 
    from = 0, 
    to = 100,
    by = 0.01
  ) {
  checkmate::assert_number(x)
  checkmate::assert_number(y)
  checkmate::assert_number(z)
  checkmate::assert_number(sigma)
  checkmate::assert_number(rho)
  checkmate::assert_number(beta)
  checkmate::assert_number(from, lower = 0)
  checkmate::assert_number(to, lower = from)
  checkmate::assert_number(by, lower = 0)
  
  lorenz_system(x, y, z, sigma, rho, beta, from, to, by) |> 
    list2env(envir = environment())
  
  plot <- 
    data |>
    ggplot2::ggplot(ggplot2::aes(x = time)) +
    ggplot2::geom_line(
      ggplot2::aes(y = y, color = "Horizontal temperature variation (Y)"),
      linewidth = 0.5,
      alpha = 0.75
    ) +
    ggplot2::geom_line(
      ggplot2::aes(y = z, color = "Vertical temperature variation (Z)"),
      linewidth = 0.5,
      alpha = 0.75
    ) +
    ggplot2::geom_line(
      ggplot2::aes(y = x, color = "Rate of convection (X)"),
      linewidth = 0.5,
      alpha = 0.75
    ) +
    ggplot2::labs(
      title = "Lorenz System Dynamics",
      subtitle = latex2exp::TeX(
        paste0(
          "$X_0$ = ", x, " | ",
          "$Y_0$ = ", y, " | ",
          "$Z_0$ = ", z, " | ",
          "$\\sigma$ = ", round(sigma, 2), " | ",
          "$\\rho$ = ", round(rho, 2), " | ",
          "$\\beta$ = ", round(beta, 2)
        ),
      ),
      x = "Time", 
      y = "Values",
      color = ggplot2::element_blank()
    ) +
    ggplot2::scale_color_manual(
      breaks = c(
        "Rate of convection (X)", 
        "Horizontal temperature variation (Y)", 
        "Vertical temperature variation (Z)"
      ),
      values = c("blue", "red", "black")
    )
  
  print(plot)
  
  invisible()
}
Code
plot_system_dynamics()

Phase space visualization

Code
plot_phase_space <- function(
    x = 1, 
    y = 1, 
    z = 1, 
    sigma = 10, 
    rho = 28, 
    beta = 8 / 3, 
    from = 0, 
    to = 100,
    by = 0.001,
    theta = 180,
    phi = 0
  ) {
  checkmate::assert_number(x)
  checkmate::assert_number(y)
  checkmate::assert_number(z)
  checkmate::assert_number(sigma)
  checkmate::assert_number(rho)
  checkmate::assert_number(beta)
  checkmate::assert_number(from, lower = 0)
  checkmate::assert_number(to, lower = from)
  checkmate::assert_number(by, lower = 0)
  
  lorenz_system(x, y, z, sigma, rho, beta, from, to, by) |> 
    list2env(envir = environment())

  plot <-
    data |>
    ggplot2::ggplot(ggplot2::aes(x = x, y = y, z = z, colour = time)) +
    gg3D::stat_3D(theta = theta, phi = phi, geom = "path") +
    theme_void() +
    theme(legend.position = "none")
  
  print(plot)
  
  invisible()
}
Code
plot_phase_space()

References

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Lorenz, E. N. (2008). The essence of chaos. UCL Press.